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Review
Glossary

Classical conditioning: a learning paradigm that pairs a neutral/conditioned

stimulus (CS) with an unconditioned stimulus (US) that evokes a reflex or

unconditioned response (UR) until the neutral stimulus evokes the same

conditioned response (CR) in the absence of the US.

Contextual conditioning: a model of fear conditioning based solely on the

context and not a discrete cue such as a light or a tone.

Extinction: the conditioning phenomenon in which a previously learned

response to a cue is reduced when the cue is presented in the absence of a

previously paired aversive or appetitive stimulus.

Pavlovian fear conditioning: a version of classical conditioning where the CS
Posttraumatic stress disorder (PTSD) is an anxiety dis-
order that can develop after a traumatic experience such
as domestic violence, natural disasters or combat-relat-
ed trauma. The cost of such disorders on society and the
individual can be tremendous. In this article, we review
how the neural circuitry implicated in PTSD in humans is
related to the neural circuitry of fear. We then discuss
how fear conditioning is a suitable model for studying
the molecular mechanisms of the fear components that
underlie PTSD, and the biology of fear conditioning with
a particular focus on the brain-derived neurotrophic
factor (BDNF)–tyrosine kinase B (TrkB), GABAergic and
glutamatergic ligand-receptor systems. We then sum-
marize how such approaches might help to inform our
understanding of PTSD and other stress-related disor-
ders and provide insight to new pharmacological ave-
nues of treatment of PTSD.

Introduction
Irrational fear is a major impediment to success and
productivity. In 1933, when Franklin D. Roosevelt ac-
knowledged ‘the only thing we have to fear is fear itself’,
he was commenting on the economic future of the USA, but
unreasonable over-generalized fear can have dramatic
effects on all aspects of one’s life. Over-generalized fear
is one of the biggest symptoms of anxiety disorders, in
particular disorders of fear regulation, including phobia,
panic disorder and posttraumatic stress disorder (PTSD).
PTSD is an example of how excessive fear can impair
quality of life. Although fear learning is an evolutionarily
advantageous responsemechanism, when fear becomes too
generalized, this mechanism might not only be unproduc-
tive but harmful. PTSD is a disorder where learned fear
due to a traumatic event becomes generalized to situations
that would normally be considered safe and results in
autonomic hyperarousal in inappropriate situations.

Three types of symptoms are prevalent in PTSD: reex-
periencing, avoidance and hyperarousal. Reexperiencing
symptoms involve flashbacks, nightmares and frightening
thoughts about the trauma, which can result in physical
symptoms including headaches, pains and other symptoms
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of somatization. Avoidance symptoms include avoiding
reminders of the experience, feeling emotionally numb,
losing interest in previously enjoyable activities and def-
icits in learning and memory. These symptoms might
cause a person to change his or her personal routine.
Finally, hyperarousal symptoms include being easily star-
tled, feeling tense, having difficulty sleeping and/or having
angry outbursts. Reminders of the traumatic event usually
trigger reexperiencing and avoidance symptoms whereas
hyperarousal symptoms might be present more continu-
ously [1–6].

There is variability in the prevalence and severity of
PTSD [3]. Trauma is necessary but not sufficient for the
precipitation of PTSD. In fact one of the most critical
current questions is why some trauma victims develop
PTSD (between 5 and 30%) [1,3,4] whereas others
experiencing the same trauma appear to be resilient. In
addition, thosewhomeet the criteria for PTSDvarywidely
in their symptom severity and in the type of symptoms
they experience [1,3–8]. A variety of factors contribute to
the magnitude of PTSD symptoms, including an individu-
al’s genetic makeup, predisposition, social support net-
work and early life experiences [9–12] (Box 1). In other
words, these factors might determine an individual’s re-
silience to trauma. Studying what accounts for this resil-
ience in certain individuals could help target treatments
and the prevention ofPTSD in traumavictimspredisposed
to develop PTSD. Understanding the neurobiological
mechanisms of PTSD as well as developing more rapid
and cost-effective treatments is of vital importance. The
(e.g. tone, light, odor) is paired with an aversive US (e.g. foot shock, air blast)

that evokes a CR (e.g. freezing, acoustic startle response or autonomic arousal).
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Box 1. Genetic association studies in PTSD

How it works: these studies compare the DNA of two groups of

participants: trauma victims with PTSD and trauma victims without

PTSD. Each person gives a sample of cells from their cheek, saliva or

blood. DNA is extracted from these cells and gene chip analyses are

performed. Rather than reading DNA sequences, these systems use

SNPs that are markers for regional DNA variation. If genetic variations

are more frequent in the affected participants, then the variations are

said to be associated with the disorder.

Some replicated genetic associations found in PTSD

BDNF (Val66Met) SNP

Function: neurotrophic factor

Result of polymorphism:

� Met allele has been shown to have altered trafficking and secretion

in neurons compared to Val allele [51].

� Met/Met carriers showed increased medial temporal lobe activation

(perhaps compensatory) during episodic and encoding retrieval

tasks [52].

� Greater recruitment of amygdala and PFC activity in Met/Met

carriers during memory formation and retrieval of biologically

relevant stimuli [53].

� Met/Met carriers exhibited impaired extinction learning, which was

correlated with altered activation of the amygdala, PFC and the

hippocampus [54].

Serotonin transporter (SERT): short versus long allele

Function: serotonin transport/reuptake

Result of polymorphism:

� Different alleles have been associated with altered SERT gene

expression/translation [158–160].

� Findings have been reported in individuals for an increased risk of

PTSD with both the long [158,159] and short allele [158,160].

� Recent data suggest that the short allele is associated with

decreased risk of PTSD in low-risk environments (e.g. low crime/

unemployment rates) but increased risk of PTSD in high-risk

environments [158]. This suggests that environment modifies the

effect of serotonin transporter-linked polymorphic region (5-

HTTLPR) genotype on PTSD risk (Figure I).

FK506-binding protein 5 (FKBP5)

Function: glucocorticoid chaperone protein

Result of polymorphism:

� PTSD associated with differential FKBP5 mRNA and protein

expression [161].

� No main effect of FKBP5 genotype on PTSD [9].

� FKBP5 SNPs interact with child maltreatment history as a predictor

of the severity of adult PTSD symptoms [9].

� FKBP5 SNPs might contribute to increased sensitivity of the

amygdala/HPA axis response to adult stress.

� The serine protease neuropsin is critical for stress-related plasticity

in the amygdala by regulating EphB2-NMDA-receptor activation of

FKBP5 expression [162].
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Figure I. Genetic and environmental factors influence the risk for developing PTSD in certain individuals as well as the severity of PTSD symptoms.
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current review addresses recent molecular approaches to
understanding PTSD using animal models of fear, limita-
tions of these models and speculation about how these
models might lead to better treatment and understanding
of PTSD and other fear-related disorders.
Pavlovian fear conditioning as a model for
understanding the underlying mechanisms of
pathological fear responses
The neural structures important to PTSD belong to the
limbic system, a region important for emotional processing
25
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in both humans and animals [13]. The three regions within
the limbic systemmost clearly altered in PTSD include the
amygdala, the hippocampus and the prefrontal cortex
(PFC). The amygdala regulates learned fear in animal
and human studies of Pavlovian fear conditioning (see
Glossary) and receives projections from the hippocampus
and PFC [14–18]. Subjects with PTSD show reduced acti-
vation of the PFC and hippocampus, which might coincide
with reduced top-down control of the amygdala, possibly
resulting in a hyper-responsive amygdala signal to fearful
stimuli [14]. This might result in the disordered fear
regulation in PTSD and other fear-related disorders. Other
regions involved with PTSD include the parahippocampal
gyrus, orbitofrontal cortex, the sensorimotor cortex, the
thalamus [7] and the anterior cingulate cortex (Figure 1)
[19–21].

Patients with PTSD show markedly different responses
to fear conditioning paradigms relative to trauma victims
without PTSD [22–31]. They demonstrate behavioral sen-
sitization to stress [22–24] and over-generalization of the
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Figure 1. A schematic of the human brain illustrating how the limbic system is invol

hippocampus both have dense connections to the amygdala, which is important for

responsible for reactivating past emotional associations and is decreased in both resp

explicit memories of traumatic events and in mediating learned responses to contextual

to traumatic stimuli [20,150]. The top down control of the amygdala by the hippocampus

subjects with PTSD [7,8,14,15]. The end result of these neuroanatomical alterations is inc

regions including the anterior cingulate cortex, the orbitofrontal cortex, the parahippoca

the regulation of fear and PTSD [151].
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conditioned stimulus (CS)–unconditioned stimulus (US)
response [25,26]. Such patients show impaired extinction
of CS–US pairings [27–29] and show impaired fear inhibi-
tory learning [31]. It is thought that this altered fear
response might result in the intrusive memories and flash-
backs, enhanced avoidance of reminder cues and autonom-
ic hyperarousal seen in PTSD [31,32]. The neural circuitry
of fear conditioning is conserved across most vertebrate
species and its behavioral readout is both quick and robust
[33,34]. Therefore, fear conditioning is a tractable method
of studying the fear response underlying PTSD. Many of
the molecular tools that have been developed to study
behavior in rodents can be applied to study mechanisms
of fear dysregulation and, therefore, to develop new thera-
peutics that might prove valuable for the treatment of
PTSD.

Evidence from animalmodels and human neuroimaging
studies suggest that one of the underlying mechanisms of
PTSD might be aberrant synaptic plasticity [7,15,35–44].
Synaptic plasticity describes the changes that occur at the
Anterior cingulate cortex
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ved in posttraumatic stress disorder (PTSD). The prefrontal cortex (PFC) and the

conditioned fear and associative emotional learning. The PFC is thought to be

onsiveness and density [7,8,14,15]. The hippocampus is thought to play a role in

cues; in PTSD, the hippocampus is decreased in volume [150] and responsiveness

and PFC might result in the increased activation of the amygdala, as is observed in

reased stress sensitivity, generalized fear responses and impaired extinction. Other

mpal gyrus, the thalamus and the sensorimotor cortex also play a secondary role in
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Figure 2. Disordered fear regulation in posttraumatic stress disorder (PTSD).

Individuals with PTSD typically show increased sensitization to stress, over-

generalization of fear to irrelevant stimuli and impaired extinction of fear

memories. Individuals who demonstrate resilience to PTSD, and/or who recover

from traumatic/ stressful experiences, are able to discriminate between fearful and

non-fearful stimuli, as well as displaying normal extinction of fear memories.
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synapse with prolonged synaptic activity. Such changes
are physiological, morphological and molecular in nature.
Synaptic plasticity is hypothesized to be the underlying
basis of learning and memory [35–45]. Behaviorally, sub-
jects with PTSD show increased sensitization to stress,
over-generalization of fear associations and failure to ex-
tinguish learned fear (Figure 2) [22–31]. Animal models
that mimic these behavioral abnormalities, such as ani-
mals trained in the fear conditioning or extinction learning
paradigms, require synaptic plasticity [35–44]. Therefore,
impairment of fear or extinction processes in PTSD might
be indicative of impaired synaptic plasticity. Much is
known about the molecular mechanisms of synaptic plas-
ticity, and understanding how PTSDmight be a disorder of
synaptic plasticity within emotional circuits will provide
new avenues for translational research.

There are two practical clinical benefits to understand-
ing the biological mechanisms of PTSD: prevention and
treatment. A better understanding of the genetics and
underlying molecular mechanisms of PTSD will hopefully
lead to better predictions about which individuals might be
more susceptible to developing PTSDafter trauma through
genetic, biomarker and psychological screening. In addi-
tion, knowledge of the molecular underpinnings of PTSD
will point towards novel molecular targets for drug devel-
opment. By generating drugs that activate these molecular
mediators of plasticity, one might be able to enhance
extinction of inappropriate fear associations or even pre-
vent development of fear associations in at-risk individua-
ls. This area of research shows great promise for potential
new approaches to treat PTSD symptoms.

Neurotrophic mechanisms of synaptic plasticity in fear
conditioning
The brain-derived neurotrophic factor (BDNF)–tyrosine
kinase B (TrkB) pathway provides one example of a li-
gand–receptor system that underlies synaptic plasticity
and has also been implicated in both PTSD in humans
and in animal models of fear conditioning, extinction and
inhibitory learning. Peripheral plasma and serum studies
[46–48] as well as genetic studies have directly linked
BDNF to PTSD [49]. In addition, transgenic, molecular
and behavioral studies in rodents have provided insights
into the underlying mechanisms of BDNF signaling in
PTSD. There is burgeoning evidence for an association
between a single nucleotide polymorphism (SNP) in the
BDNF gene (Val66Met) and various psychiatric disorders,
including depression and schizophrenia [49,50]. This mu-
tation is thought to alter BDNF stability and activity-
dependent secretion, hence leading to dysfunctional BDNF
signaling [51]. Although there is limited evidence for a role
of the Val66Met polymorphism in PTSD, the Val66Met
polymorphism might also result in altered memory func-
tion [50–55]. BDNF (Met/Met) carriers showed increased
medial temporal lobe activation during episodic and encod-
ing retrieval tasks [52]. Another study described greater
recruitment of amygdala and PFC activity in Met/Met
carriers during memory formation and retrieval of biologi-
cally relevant stimuli [53]. Finally, BDNF (Met/Met) car-
riers exhibited impaired extinction learning, which was
correlated with altered activation of the amygdala, PFC
and the hippocampus [54–56]. Together these data suggest
that this polymorphism might play a role in activation of
the limbic system during memory formation and emotion-
ally-relevant learning.

Humanized BDNF (Val66Met) knock-in mice with the
Met/Met phenotype show increased anxiety-related beha-
viors compared to Val carrier mice when placed in stressful
settings [57,58]. BDNF (Met/Met) mice and humans car-
rying the Met allele show impaired extinction learning
after fear conditioning [56,59]. Together these studies
suggest that the transgenicmice share a similar phenotype
to individuals at risk for PTSD in that they appear to be
more sensitive to stress/anxiety and have impaired extinc-
tion of conditioned fear. In addition, BDNF (Met/Met) mice
showed impaired NMDA receptor-dependent synaptic
plasticity in the hippocampus [60]. It has not been reported
whether these mice show impaired plasticity in the amyg-
dala and PFC, although the extant data support the idea
that PTSD is a disorder of aberrant plasticity mechanisms
and that these mechanisms are regulated by BDNF sig-
naling.

BDNF–TrkB signaling has been shown to be necessary
for various aspects of fear conditioning and extinction in all
three of the regions implicated in PTSD: the amygdala, the
hippocampus and the PFC [61–73]. In the amygdala,
BDNF transcription is increased during the consolidation
period 2 hours after fear conditioning [60–63]. Inhibiting
BDNF signaling in the amygdala impairs both the acqui-
sition and consolidation of fear conditioning [67] and the
consolidation of extinction [66]. In addition, an increase in
BDNF was observed after the normal window of consoli-
dation at around 12 hours after fear conditioning and this
peak in BDNF expression was shown to be crucial for
persistence of the fear memory [68]. Recent evidence sug-
gests that one effect of BDNF activation of TrkB is to lower
the threshold for synaptic plasticity to occur. In single cell
slice physiology studies, the threshold for LTP induction in
BLA principal neurons is critically dependent on the level
of dopamine in the extracellular milieu and the synergistic
27
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activation of postsynaptic D1 and TrkB receptors [74]. This
is consistent with other new data examining thalamo-
amygdala LTP processes, which suggest a postsynaptic
site of action of BDNF in mediating LTP selectively in
the thalamic fear conditioning pathway [75]. Thus, BDNF
signaling in the amygdala appears to play a significant role
in synaptic plasticity events underlying the consolidation
and the persistence of fear memories.

Mice heterozygous for the BDNF deletion (BDNF+/�)
showed impaired contextual fear conditioning, which could
be partially rescued with expression of BDNF in the hip-
pocampus [69]. Mice in which BDNF was selectively delet-
ed from the hippocampus did not show impaired
acquisition of fear conditioning; however, there was a
marked decrease in extinction of conditioned fear [62].
This result suggests that normal hippocampal plasticity
is required for normal context-dependent extinction of
conditioned fear. Taken together with the findings of
smaller hippocampal volumes in subjects with PTSD
[62,69], these convergent data suggest that impaired hip-
pocampal function in PTSD might be causally related to
these subjects’ impairment in extinction of fear memories.

BDNF has also been implicated in differential roles in
distinct subregions of the PFC in the retention and in
the extinction of learned fear. Genetic deletion of BDNF
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selectively in the prelimbic area (PL) of the PFC causes
impairment in consolidation of learned fear but not extinc-
tion [70]. By contrast, infusing BDNF into the infralimbic
area (IL) of the PFC resulted in reduced fear expression for
up to 48 hours after fear conditioning even in the absence of
extinction training but did not erase the original fear
memory [71]. Rats with impaired extinction showed less
BDNF expression in the IL PFC compared to control rats,
and infusing BDNF into the IL prevented extinction fail-
ure. These data suggest that BDNF might be a crucial
mediator of neural plasticity in both regions. Owing to the
differential connectivity and functioning of IL and PL,
BDNF in these areas also results in opposite effects. BDNF
in the PL is necessary for fear memory formation and
expression, whereas BDNF in the IL is apparently neces-
sary for the inhibition, or extinction, of that fear. Thus,
BDNF signaling in the PFC plays a critical role in the
regulation of fear and emotion and might serve as a target
for enhancing extinction in subjects with PTSD.

The TrkB receptor is composed of an extracellular do-
main that binds BDNF and an intracellular domain that
activates signaling pathways through phosphorylation of
two tyrosine residues, Y515 or Y816, which activate diver-
gent signaling pathways (Figure 3). Phosphorylation of the
Y515 residue allows recruitment of Src homology 2 domain
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duced signaling pathway. BDNF binds to the TrkB receptor, resulting in the

the TrkB receptor. Phosphorylation of the Y515 residue allows recruitment of Src

2), which subsequently activates the Ras/mitogen activated protein kinase (MAPK)

816 residue allows recruitment of phospholipase C (PLC), which activates the Ca2+/

(CREB) signaling pathway. Point mutations of the Y515 residue produce deficits in
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containing/fibroblast growth factor receptor substrate 2
(Shc/FRS-2) activating the RAS/mitogen activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)
pathways. By contrast, phosphorylation of the Y816 resi-
due allows recruitment of phospholipase C (PLC), which
activates the Ca2+/calmodulin-dependent protein kinase
(CAMK)/cAMP responsive element binding protein
(CREB) signaling pathway [76]. Genetic mouse models
carrying single point mutations at each of these two sites
(Y515F or Y816F) have been developed [72]. TrkB (Y515F)
knock-in heterozygous mice exhibited deficits in consolida-
tion but not acquisition of fear conditioning, whereas TrkB
(Y816F) mice exhibited deficits in acquisition [72]. How
acquisition and consolidation lead to differential activation
of the TrkB receptor at the Y515 site versus the Y816 site is
currently unclear. Furthermore, it will be of interest to
study the different roles of these phosphorylation sites in
the extinction of learned fear.

Despite significant evidence suggesting a role for the
BDNF–TrkB system in fear-related and other affective
disorders, a lack of ligands for the high affinity TrkB
receptor has limited progress towards BDNF-related treat-
ments for psychiatric and neurological disorders. However,
7,8-dihydroxyflavone (7,8-DHF) has recently been identi-
fied as a relatively specific TrkB agonist that crosses the
blood-brain barrier after oral or i.p. systemic administra-
tion in mice [61]. It was subsequently demonstrated that
amygdala TrkB receptors are activated by systemic 7,8-
DHF (5 mg/kg, i.p.) [73]. In addition, systemic 7,8-DHF
rescued the fear consolidation deficit observed in prelimbic
BDNF knockout mice [70] and enhanced both the acquisi-
tion of fear and its extinction in wild type mice [73].
Furthermore, this agonist appears to rescue an extinction
deficit in mice with a history of immobilization stress,
which might serve as a face-valid animal model of PTSD
[73]. These data suggest that 7,8-DHF and other potential
TrkB activating ligands might not only be valuable as
pharmacological tools for achieving a better understanding
of the role of BDNF–TrkB signaling pathways in learning
and memory, but also as potential therapeutics for revers-
ing learning and extinction deficits associated with psy-
chopathology.

An additional molecule that has been implicated in
synaptic plasticity and BDNF regulation is pituitary ade-
nylate cyclase-activating polypeptide (PACAP). PACAP is
known to broadly regulate the cellular stress response,
however, it was only recently demonstrated to also have a
role in human psychological stress responses, such as
PTSD. Specifically, a sex-specific (female) association of
PACAP blood levels with fear physiology, PTSD diagnosis
and symptoms was observed in a population of heavily
traumatized subjects [77]. In addition, a single SNP in a
putative estrogen response element within the PACAP
receptor (PAC1) was associated with PTSD symptoms in
females only. This SNP also associated with enhanced
levels of fear discrimination and with levels of PAC1
mRNA expression in human cortex. Methylation of the
PAC1 gene in peripheral blood was also found to be sig-
nificantly associatedwithPTSD [77].Note that an increas-
ing body of literature is suggesting an important role
for epigenetic regulation (DNA methylation and histone
modification) of amygdala-dependent fear processes in
animal models (e.g. [78]). Complementing these human
findings, PAC1mRNA expressionwas inducedwith either
fear conditioning or estrogen replacement in rodent mod-
els [77]. These data suggest that perturbations in the
PACAP–PAC1 pathway are involved in abnormal stress
responses underlying PTSD, and that some of the sex-
specific differences in PTSD risk/resilience [79] might be
in part due to estrogen modulation of this pathway.

GABAergic inhibitory regulation of neuronal circuits in
fear conditioning
GABAergic inhibitory control is crucial for the precise regu-
lation of consolidation, expression and extinction of fear
conditioning [80–82]. Fear conditioning results in a reduc-
tion inGABAergic signaling in thebasolateral nucleus of the
amygdala (BLA) relative to non-fear conditioned controls
[83] and genetic deletion of the a1 subunit of the GABAA

receptor enhances auditory fear learning [84]. Many of the
early papers used GABA agonists as a method of inactivat-
ing specific brain regions to determine their role in behavior.
GABAergic inactivation of the amygdala, hippocampus,
PFC and regions of the striatum resulted in impairments
in various aspects of conditioned fear [85–87]. In addition,
GABAergic inactivation of the infralimbic cortex, BLA or
ventral hippocampus also impaired fear extinction
[86,88,89]. However, GABAergic signaling is more than a
methodological tool for inactivating regions of the brain but
appears to maintain tight regulatory control over microcir-
cuits in a region and cell-type specific manner.

Two recent papers have outlined how GABAergic inhib-
itory microcircuits might regulate acquisition and expres-
sion of fear memories in the central nucleus of the
amygdala (CEA). It was originally thought that associative
learning primarily occurs in the BLA, whereas the CEA
mainly controlled the expression of fear [90]. Such regula-
tion of fear expression occurs via projections from central
amygdala output neurons, which are mainly located in the
medial subdivision (CEm), to the brainstem and hypothal-
amus [90]. However, a role for the CEA in fear acquisition
has been demonstrated [90]. Activation of the CEm in mice
by pharmacological and physiological techniques was
found to result in strong and reversible freezing responses
[90]. Inactivating the lateral division of the CEA (CEl), but
not the CEm, was found to induce unconditioned freezing
as well as impairing fear conditioning. From these results,
it was concluded that neuronal activity in the CEm is
necessary and sufficient for driving the freezing response
but that the CEl is required for the acquisition of fear and
produces tonic inhibitory control of the CEm, which is
reduced during presentation of the conditioned stimulus
(CS+) [90].

Moreover, the above study also identified two distinct
subpopulations of inhibitory GABAergic neurons in the
CEl [90]. These neuronal subpopulations were termed
CEl ‘on’ and ‘off’ neurons based on their response to fear
conditioning. CEl ‘on’ neurons acquired an excitatory re-
sponse to the CS+ during and after fear acquisition, where-
as CEI ‘off’ neurons showed decreased responses to the CS+
during and after fear acquisition. CS evoked excitation of
CEl ‘on’ neurons began before the CEl ‘off’ neurons, and
29
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both ‘on’ and ‘off’ neurons sent inhibitory projections to the
CEm [90]. CS evoked inhibition of ‘off’ neurons started
immediately prior to excitation of CEmneurons, indicating
that increases in CEm firing might be due to a reduction of
inhibition from CEl ‘off’ neurons. It is also probable based
on the short onset latency of the CS-evoked excitation of
CEl ‘on’ neurons that they receive direct input from the
sensory thalamus. The CEm also receives thalamic input
[90], which might be inhibited by feed forward inhibition
through the CE ‘on’ pathway. Based on this physiological
data, it is hypothesized that fear conditioning leads to a
shift in the balance of activity between distinct classes of
CEl neurons, which ultimately regulates the activity of
CEm firing [90].

A second recent study has added to the understanding of
CEA inhibitory microcircuits by molecularly defining two
subtypes of inhibitory neurons in the CEl by the presence
or absence of the d isoform of protein kinase C (PKC- d) [91].
Using molecular and genetic approaches, this study was
able to map the functional connectivity of PKC- d+ and
PKC-d– neurons. Specifically, optogenetic targeting was
employed to examine the effect of reversibly silencing PKC-
d+ neurons on the activity of CEl ‘on’, CEl ‘off’ and CEm
neurons. PKC- d+ neurons were found to be predominantly
late firing neurons, which reciprocally inhibit PKC-d– neu-
rons. Inactivation of PKC-d+ neurons evoked action poten-
tials in the CEm output neurons. In addition, tonic activity
of CEl ‘off’ units was strongly suppressed by the inactiva-
tion of PKC-d+ neurons. Taken together, these findings
suggest that the PKC-d+ neurons are likely to be the CEl
‘off’ neurons [91] (Figure 4).

Another recent study observed that temporally precise
optogenetic stimulation of BLA terminals in the CEA
exerted an acute, reversible anxiolytic effect [92]. These[(Figure_4)TD$FIG]
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Figure 4. Schematic diagram illustrating the key amygdala nuclei involved in fear

conditioning. Microcircuits within the amygdala demonstrate multiple levels of

regulation with response to fear consolidation, extinction and the expression of

fear. Initially, it was thought that the basolateral nucleus of the amygdala (BLA)

complex was solely responsible for fear acquisition and was the main recipient of

thalamic and cortical inputs. The central amygdala was thought to be crucial only

for the expression of conditioned fear responses via activation of downstream

neural structures [35,151]. Now, significant evidence supports the idea that the

lateral division of the central amygdala (CEl) is also critical for acquisition of fear

and also receives cortical and thalamic inputs. In addition, intercalated neurons

might regulate firing of central amygdala output neurons and the expression of

extinction. The intercalated neurons receive projections from the infralimbic cortex

(a region critical for extinction) and project GABAergic inhibitory neurons onto the

medial division of the central amygdala (CEm).
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results implicate specific BLA-CEA projections as critical
circuit elements for acute anxiety control in the mammali-
an brain.

Together, these recent papers provide new insight into
the role of GABAergic inhibitory microcircuits in the ac-
quisition and expression of fear conditioning. One out-
standing question from this research is: if both CEl ‘off’
and CEl ‘on’ units send inhibitory projections to the CEm,
why is CEm activity increased rather than decreased after
fear conditioning? This might be due simply to a balance
between on and off neuron firing, i.e. the effect of decreased
CEl ‘off’ firing is greater than the effect of increased CEl ‘on’
firing. Another reason could be that the CEl ‘on’ neurons
project to a different subpopulation of CEm neurons. Such
recent findings add another level of control to the acquisi-
tion of fear. Not only is the BLA complex crucial for fear
conditioning, but the CEl also appears to be crucial. The
CEl is downstream of the BLA but might also work in
parallel to form fear memories because it also receives
connections from auditory thalamic nuclei and cortical
areas. Because the CEA is downstream of these structures,
the CEAmight be able to override stimulus discrimination
established in upstream structures such as sensory and
association cortex and thalamic regions.

Furthermore, feed forward inhibition from intercalated
(ITC) neurons might implicate the CEl as the primary
target for fear extinction. ITC cells are a very small sub-
population of neurons located just medial to the BLA
complex, and they appear to be necessary for extinction.
Selectively lesioning ITC neurons results in a marked
impairment in extinction learning [93]. ITC neurons re-
ceive glutamateric input from the PFC [94,95] and directly
project to both the CEl and CEm [91]. Activating the
infralimbic region of the PFC resulted in activation of
the immediate early gene, c-fos, in ITC neurons [95],
and extinction produced an excitation in ITC neurons,
which resulted in inhibition of the CEA output neurons
[95]. The BLA also synapses onto ITC neurons [96], pro-
viding another level of regulation of fear learning and
extinction (Figure 4). Clearly, fear conditioning and extinc-
tion are under tight regulatory control by GABAergic
signaling, and as will be discussed in the next section,
glutamatergic signaling also plays a key regulatory role.

Glutamatergic signaling in fear conditioning
Glutamate is the main excitatory neurotransmitter in the
brain, therefore it is not surprising that glutamatergic
signaling is essential for the consolidation and extinction
of fear. Glutamatergic cells in the BLA are activated after
fear conditioning in rodents [97]. The BLA receives gluta-
matergic input from the sensory thalamic and cortical
structures as well as the hippocampus and PFC [35]. In
addition, the BLA sends glutamatergic signals to the CEA,
which regulates the inhibitory microcircuits reviewed in
the previous section. Glutamate acts on a variety of iono-
tropic (NMDA, AMPA) andmetabotropic receptors (mGluR
1–8), which have beenwidely demonstrated to play a role in
fear conditioning. Ionotropic glutamate receptors are the
key mediators of synaptic plasticity required for long-term
fear memories, whereas mGluRs modulate synaptic plas-
ticity through G-protein coupled signal transduction.



Review Trends in Neurosciences January 2012, Vol. 35, No. 1
Fear conditioning appears to result in an activation of
NMDA receptors [98]. There are multiple ways by which
NMDA activation contributes to synaptic plasticity in the
amygdala, some of which are described below. Fear condi-
tioning also results in NMDA receptor-dependent increases
in degradation-specific polyubiquitination in the amygdala,
targeting proteins involved in translational control and
synaptic structure [99]. This recent study also showed that
blocking the degradation of these proteins significantly
impairs long-term memory. In addition to these mecha-
nisms, within the synapse downstream signaling mecha-
nisms result in a subsequent insertion of additional AMPA
receptors at synaptic sites [98–103]. This increase in surface
AMPA receptors results in LTP and an increased respon-
siveness of the synapse to future CS+ presentations. Antag-
onizing NMDA receptors in either the hippocampus or BLA
impairs consolidation of fear conditioning [104–106]. Block-
ing AMPA receptor insertion in the synaptic membrane in
the lateral amygdala blocks fear memory formation
[101,102]. Extinction of fear conditioning also appears to
be regulated by NMDA and AMPA receptor signaling. An-
tagonizing NMDA receptors can impair extinction in
rodents [106,107]. In addition, there appears to be a reduc-
tion in surface AMPA receptors after extinction, relative to
fear-conditioned animals that were not extinguished [108].

Changes in NMDA/AMPA ratios appear to happen rap-
idly during consolidation of memory, but the question
remains: how is glutamatergic signaling translated into
a long-term memory and how is that memory biologically
maintained? Protein kinase M zeta (PKMz) is an atypical
isoform of PKC that can stay chronically active despite
molecular turnover. Overexpression of PKMz enhances
long-term memory [109] and inhibiting PKMz can disrupt
memory, even after that memory has been formed [109–

114]. In addition, PKMz inactivation-induced impairment
of fear memory appears to correlate with a decrease in
expression of the GluR2 subunit of the AMPA receptor
[110]. Furthermore, blocking GluR2-dependent removal
of postsynaptic AMPA receptors abolished behavioral
Table 1. Other ligand–receptor systems involved in the regulation

System Function Supporting evidencea

Norepinephrine (NE) Consolidation Enhanced with a1-adrene

Impaired by siRNA for b

Extinction Impaired by antagonizin

NOS-cGMP Consolidation Enhanced by PKG activa

Impaired contextual cond

Impaired in cGMP mutan

Impaired by NOS and PK

Endocannabinoid Consolidation CB1 mRNA increases 48

Enhanced by inverse ago

Impaired by CB1 recepto

Extinction Impaired by pharmacolo

Dopamine (DA) Consolidation Enhanced by D2 recepto

D2 receptor antagonists

Extinction Impaired by D1 receptor

Impaired by systemic or

Acetylcholine (Ach) Consolidation Enhanced by nicotinic A

Impaired by a7 nAch rec

Extinction Impaired by nAch agonis

aAbbreviations: AEA, anandamide; CB1, cannabinoid receptor type 1; IL, infralimbic; K

siRNA, small interfering RNA.
impairment of PKMz inhibition [110], suggesting that
PKMz might be a mechanistic switch that maintains mem-
ory over time through the regulation of AMPA receptor
trafficking. However, a pharmacological inhibitor of PKMz

only temporarily disrupts expression of fear conditioning
when administered to rats immediately prior to testing
and does not completely abolish the fear memory [111].
Thus, at least based on these findings, it appears that
PKMz is an unlikely drug target for PTSD.

An alternative promising avenue for the modulation of
glutamatergic signaling has been the development of D-
cycloserine (DCS), an NMDA partial agonist. DCS has
been shown to facilitate extinction learning in animals
and humans [115–127]. More recently, DCS has been
suggested to reverse the reduction in AMPA receptors that
is normally observed at synaptic sites in the lateral amyg-
dala after fear learning [97]. Clinically, DCS has been
shown to be a valuable augmentation to behavioral thera-
pies for a variety of anxiety-related disorders, including
obsessive-compulsive disorder [121–125,127,128], however
definitive trials specifically for PTSD treatment using DCS
have yet to be completed. DCS is an example of a drug that
enhances the extinction of fear in animals and humans, as
well as enhancing behavioral therapy in individuals with
anxiety disorders involving fear dysregulation.

mGluRs modulate synaptic plasticity in the brain and
are critical for the consolidation of fear conditioning and
extinction. Although there have been mixed reports about
the effect of mGluR agonists on fear conditioning, in gen-
eral, mGluR antagonists and genetic deletion of mGluRs in
the limbic regions of the brain appear to impair both
consolidation and extinction of fear conditioning [129–

134]. Activation of mGluR1-containing receptors in the
BLA is known to enhance fear learning [135].

Many other receptor–ligand systems play a modulatory
role in Pavlovian fear conditioning and probably contribute
to PTSD, mostly by modulating GABAergic and glutama-
tergic signaling (Table 1). Two retrograde signaling sys-
tems (involving nitric oxide and endocannibinoids as the
of Pavlovian fear conditioning

Refs

rgic receptor antagonists [142]

1-adrenergic receptors [143]

g NE receptors in the infralimbic cortex [144,145]

tion in the LA [137]

itioning in nNOS KO mice [138]

t mice [139]

G inhibition in the LA [140]

h after fear conditioning [136]

nist of CB1 in the CEA or BLA [136]

r agonist or AEA transport inhibition into the vmPFC [136]

gical blockade or genetic deletion of CB1 receptors [141,152]

r agonists in the VTA [146,147]

in the BLA impair fear potentiated startle [146]

loss (genetic KO or siRNA in hippocampus) [148]

intra-IL PFC infusion of D2 antagonist [149]

ch (nACh) agonists in the hippocampus [153–155]

eptor antagonists [156]

ts [157]

O, knockout; NOS, nitric oxide synthase; PKG, cGMP-dependent protein kinase;
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Box 2. Outstanding questions

� Why are some individuals at risk for developing PTSD, but despite

similar trauma, others appear to be resistant?

� Furthermore, as with many common diseases, PTSD will probably

represent a final common pathway of a ‘broken brain’ at the

intersection of trauma and biology. How many different ‘sub-

types’ of PTSD might there be?

� Will our current syndromal nomenclature be predictive of these

subtypes, or will future biomarkers provide new ways of

dissecting this syndrome?

� Is the resilience that we define as lack of PTSD, despite severe

trauma, simply the absence of PTSD symptoms (along with

comorbid depression and substance abuse) or is resilience an

orthogonal construct that is uniquely protective?

� Up to 30–35% of risk for PTSD appears to be heritable [163].

Similar to a number of other disorders, will this be made up of

many common gene variants, which each contribute only a small

percentage of risk, or will there be a larger number of rare variants

that each contribute higher levels of risk?

� With sufficient trauma loading, almost anyone is susceptible to

PTSD. Genes appear to differentially modulate the level of

susceptibility at a given trauma level or trauma ‘dose’. How do

the effects of childhood and adult trauma interact through neural

circuitry with genes that contribute risk, and which might act in an

additive fashion on this same circuitry?

� The neural circuitry modulating fear, including the amygdala, PFC

and hippocampal regions are conserved across mammals. This

makes research on PTSD and other anxiety-related disorders

more readily accessible to translation compared to many other

mental disorders. Utilizing human dynamic and structural neu-

roimaging techniques combined with rodent and other laboratory

model species, we can ask how do these different regions that

organize and modulate the emotion of fear work in concert?
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retrograde messengers) have been shown to be important
for presynaptically-regulated plasticity in consolidation
and extinction, respectively [136–141]. Noradrenergic sig-
naling from the locus coeruleus [142–145], and dopaminer-
gic projections to the amygdala from the ventral tegmental
area (VTA) and nucleus accumbens [146–149] also play
important roles in modulating synaptic plasticity and fear
conditioning. These transmitter systems could provide
additional potential molecular targets for the pharmaco-
logical augmentation of behavioral therapy for PTSD.

Concluding remarks
The molecular pathways discussed in this review are
crucial for fear conditioning and extinction. Recent re-
search has advanced our understanding of many of the
downstream molecular mechanisms of these forms of
learning. By understanding the genetics of PTSDwemight
eventually be better able to predict which individuals
might be more susceptible to developing PTSD after trau-
ma. In addition, knowing the molecular underpinnings of
PTSD will provide important new insights into molecular
targets for drug development. By generating drugs that
modulate signaling pathways involved in fear conditioning
and synaptic plasticity in the amygdala, we might be able
to enhance extinction of inappropriate fear associations or
even prevent the development of fear associations in indi-
viduals more susceptible to PTSD. Research in this area
shows great promise for potential new approaches to better
understand the physiology of circuits mediating fear
responses, as well as to potentially further the prevention
and treatment of PTSD (Box 2). Given the rising numbers
32
of traumatized civilians and veterans, in addition to our
increasing understanding of the prevalence, comorbidity
and sequelae of PTSD, developing better preventions and
treatments are vital.
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